
Lab 09 - Memory, CPU and Network Monitoring (Windows)

01 - Objectives

 How to find the root cause if the system runs out of memory with TaskManager,

Windows Performance Recorder, Windows Performance Analyzer, Visual Studio, VMMap.

 Monitoring the CPU usage with TaskManager, Windows Performance Recorder,

Windows Performance Analyzer.

 Check the amount of network traffic generated by processes with TaskManager,

Windows Performance Recorder, Microsoft Network Monitoring, Wireshark.

02 - Memory, CPU and Network Monitoring (Windows)

Introduction

 The Windows operating system comes with plenty of built-in tools to analyze resource

usage. The most prominent one is probably the Windows Task Manager, as it highlights resource

usage of individual processes, and gives admins and users options to kill any misbehaving ones.

 The Performance Monitor and Resource Monitor are two additional tools that admins and

experienced Windows users may use to analyze performance or resources related issues on

Windows PCs.

03 - Tutorials/Exercises

The password for log2.zip and build.zip is: parola

Exercise 01. [30p] RAM Monitoring

Task Manager

The memory usage by processes

is dynamic, thus it is possible to

have memory allocation

spikes. Task Manager shows

the amount of memory allocated

to a process. To see this

information, check the Peak

Working Set value in the

Details tab. It can be noticed that

sometimes Peak Working

Set can be significantly larger

than Working Set.

[15p] Task A - Identify the problem

 What can you do if the system runs out of memory, but you do not know what causes this?

Windows Performance Recorder

https://ocw.cs.pub.ro/courses/_media/ep/laboratoare/logs2.zip
https://ocw.cs.pub.ro/courses/_media/ep/labs/build.zip
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_taskmanager-ram.jpg?id=ep:labs:09

Imagine a situation when a system

encounters issues if some

conditions are met, and these

conditions can be reproduced. To

find out the source of this problem,

start Windows Performance

Recorder configured as shown

below.

Windows Performance Analyzer

Run in

parallel a

program that

allocates

1MB of

memory

every 100

milliseconds

for a while

and then

stops. After

the program

stops

running, save

the capture

and open it

in Windows

Performanc

e Analyzer.

You should

get the

following.

Click Add all

Memory

graphs to

Analysis

View and

scroll down

to

the Virtual

Memory

Snapshot gra

ph which

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpa-ram-rec.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpa-ram-select.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpa-ram-graphs.jpg?id=ep:labs:09

shows the

memory

usage for all

processes.

Visual Studio

After installing, it requires

including the vld.h file. When

writing the code, the following

functions need to be overwritten:

malloc, free, new, and delete. This

allows each memory allocation and

deallocation to be tracked. All the

detected leakages (having an

allocation that is not followed by a

deallocation) will be saved in a log

file that can be viewed after the

program stops running. In the

bottom part of the screenshot

shown below, it can be noticed

where the allocation took place and

that it is not followed by a

deallocation.

VMMap

However, it

might be the

case that this

is not a

memory leak,

and

somewhere at

the end of the

program the

memory gets

unallocated. If

this is the

case, how can

you determine

which part of

the program is

responsible

for generating

the spike?

This requires

using another

tool from

SysInternals,

VMMap.

With this tool

you can view

a process's

https://technet.microsoft.com/en-us/sysinternals/vmmap.aspx
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_visualstudio-vld.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_vmmap-configure.jpg?id=ep:labs:09

memory

allocations

and usage.

Use it to run

the program

that allocates

1 MB of

memory every

100

milliseconds.

Prior to

starting the

tool, go to

Options,

Configure

Symbols and

set the paths to

the program's,

to the

Microsoft

Symbol

Server, and to

the program's

source files.

Start the tool,

select Launch

and trace a

new process,

select the

process, select

the directory

where it will

run, and let it

run. You will

see something

similar to the

screenshot

below. To

view the latest

memory

allocations,

you need to

double-

click Heap in

the upper-part

of the

screenshot,

and hit F5

(refresh) from

time to time.

In the bottom

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_vmmap-analyze.jpg?id=ep:labs:09

part of the

screenshot,

you can view

the memory

allocations. If

you click one

and

press Heap

Allocations y

ou can see the

stack where

the allocation

occurred. By

pressing the

“Source”

button, you

can view the

actual code for

the allocation.

[15p] Task B - Conclusions

 Discuss the output and call the assistant to show him/her your progress.

Exercise 02. [30p] CPU Monitoring

Task Manager

Monitoring

the CPU

usage

presents

similar

issues to

the ones

encountere

d when

monitoring

the

memory

usage.

Task

Manager

can help

find out the

current

CPU usage

for a

process.

Windows Performance Recorder

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_taskmanager-cpu.jpg?id=ep:labs:09

Considerin

g the same

scenario as

the one

presented

in the

previous

section:

what if the

CPU usage

briefly

spikes up

and then

goes back

to normal,

how can

you catch

this? Using

Task

Manager

would

mean

having

someone

continuous

ly

watching

what is

happening

to catch the

moment

when the

spike

occurs.

Use

Windows

Performan

ce

Recorder,

with the

same

settings as

in the

screenshot

below.

Windows Performance Analyzer

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpr-cpuusagestart.jpg?id=ep:labs:09

After clicking start, run

CPUUsage.exe (part of the

resources provided at the end of

the tutorial), which generates

CPU usage. Save and open the

catch.

Right-click on to the

Computation area and click

“Add All Calculation graphs to

Analysis View”.

The graph shows the impact of CPUUsage.exe, which inflicts a 12% CPU usage. Part of the

problem is solved, it was determined who is generating the CPU usage. Now, to further debug the

situation, as in the previous case of the memory, if this process was not written by you, check if it

is useful, and if not, make sure to stop it. If it is useful, but it's not yours, you can try to find an

update to fix the problem, or report the problem to the producer. If the program is written by you

(this course - Performance Evaluation - targets the processes written by us), then it is important to

determine what causes this problem. Unfortunately, unlike in the case of monitoring the memory

usage, there is no tool that shows the stack with the problem, so you need to create one. Open

EvenimenteProcMon, which has the purpose of integrating your messages with ProcessMonitor

so they can be viewed as the process unfolds. It is necessary to understand any code, not perfectly,

but at least to get the big picture of what is going on.

A ProcessMonitor class with 5 functions was created:

 OpenProcMon opens up a handle for the ProcessMonitor's message interface.

 CloseProcMon closes this handle.

 ProcMonLog writes the message that is passed as a parameter to the ProcessMonitor

interface.

 MyProcMon is the class constructor. It is called when a MyProcMon object is declared.

 ~ MyProcMon is the class destructor. It is called to destroy the MyProcMon object.

The code below highlights that it was declared globally:

MyProcMon __procMon;

This means that at the start of the process, before executing the main function, when the global

variables are initialized, our class instance will be constructed along with the implicit handle for

the ProcessMonitor message interface. The handle is closed when the object is destroyed, after the

program's execution ends.

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpr-cpuusageselect.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpr-cpuusagegraphs.jpg?id=ep:labs:09

Another class was declared, ProcMonLogFunc, with the purpose of highlighting when entering

and leaving a function. This led to defining the following macro, which declares a

ProcMonLogFunc object and passes it the name of the current function as a parameter.

#define DBGTRACE_FN_ () ProcMonLogFunc __my_log __ (__ FUNCTIONW__)

Start

ProcessMonitor

and change the

filter to

ProcessName

contains

EvenimenteProc

Mon. Select the

profiling button

as shown below.

Running the

program,

generates a

Process Monitor

capture like this

one.

Notice messages such as Output: =⇒ Func1 and Output: ⇐= Func1, with the associated times for

these events in the left-hand side of the screenshot, in the Time of Day column. The difference

between the times (4:42:07.1848883 and 4:42:07.1848955) is 72, and since the times after the

comma are expressed in hundreds of nanoseconds, this means that func1 took 7.2 microseconds.

As it is inefficient to calculate by hand the times for each function, save the output in csv format

(File → Save and choose the “Comma-Separated Values” option). The generated file will look

like this:

"4:42:07.1846936 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: ==>main"

"4:42:07.1848812 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: Acesta e logul meu 1"

"4:42:07.1848883 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: ==>Func1"

"4:42:07.1848955 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: <==Func1"

"4:42:07.1848990 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: ==>Func2"

"4:42:07.1849038 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: <==Func2"

"4:42:07.1849069 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: ==>Func3"

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_butonprofiling.png?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_procmon-profiling.jpg?id=ep:labs:09

"4:42:07.1849105 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: <==Func3"

"4:42:07.1849148 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: Acesta e logul meu 2"

"4:42:07.1849184 PM","EvenimenteProcMon.exe","6352","Debug Output

Profiling","","","Output: <==main"

Making a parser in Python would make it easy to notice in which of the functions was spent the

most time. If you only want to take into account the CPU usage, you need to have logging messages

before and after every I/O operation, in order to not count in their time.

Integrate CPUUsage with ProcessMonitor and find out the total time spent in every function.

Exercise 03. [40p] Network Monitoring

Task A [20p] - Go through tutorial

Task Manager

The

amount of

network

traffic

generated

by a

process can

be seen

using Task

Mananger.

Windows Performance Recorder

The

resources

for this

tutorial

include

Winhttp.ex

e, a

program

that

downloads

putty.exe.

The above

screenshot

displays its

network

activity.

However,

if the

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_taskmanagernetworking.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wpr-cpustart.jpg?id=ep:labs:09

process

generating

the

network

activity is

unknown,

you can use

Windows

Performan

ce

Recorder

with the

following

settings.

Save and

open the

capture to

view it.

The

statistics

offered by

Windows

Performan

ce

Analyzer

are for the

total use of

the

network,

rather than

per process

statistics.

Microsoft Network Monitoring

For this reason, we are calling

upon another tool developed by

Microsoft. Install it, start it using

“Run as administrator”, and select

the network interface through

which the traffic is expected to

pass (cable, wifi, …). You should

get a capture such as this one:

Wireshark

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_netmon.jpg?id=ep:labs:09

As in the

case of the

CPU,

inspecting

the events

taking place

on the

network

involves

some

amount of

work for the

analyst.

However,

this being a

simple case,

you can just

expand the

view on the

traffic

generated by

Winhttp.exe,

and notice

the request

for putty.exe.

If it is not

clear why

some

requests are

there or why

they last so

long, you

can integrate

the

application

that you

wish to

investigate

with

ProcessMoni

tor. This way

you can

insert

logging

elements to

find out what

request are

made and

how long

they take.

The part

with timing

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-start.jpg?id=ep:labs:09

the requests

and traffic

can be

determined

straight from

Network

Monitor by

considering

the times of

the packets.

For

displaying

all traffic on

a http

connection

(it can also

be https as

long as you

control the

server, but

this in not in

the scope of

this tutorial),

you can use

another

tool, Wiresh

ark. Install

Wireshark

(64bit!!!)

accepting the

default

settings.

Start it and

select the

interface that

you want to

listen to.

Click

the Start butt

on and run

Winhttp.exe.

After

Winhttp.exe

stops, click

the Stop

button in

Wireshark.

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-captura.jpg?id=ep:labs:09

This way

you have

obtained a

traffic

capture

while

winhttp.exe

was running.

Viewing the

code for

winhttp.exe,

it can be

noticed that

it makes a

request

to www.soci

ouman-

usamvb.ro.

Use the ping

command to

get the IP

address for

this url.

Switching

back to

Wireshark,

add a filter

for ip.addr =

86.106.30.11

5 (make sure

to use the IP

address

identified

using ping

command).

Right click

Get

documents

and choose

Follow TCP

Stream.

In the

bottom part

of the

Wireshark

window, at

the ”Show

and save

data as”

option

choose

http://www.sociouman-usamvb.ro/
http://www.sociouman-usamvb.ro/
http://www.sociouman-usamvb.ro/
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_findip.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-captura2.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-rawdata.jpg?id=ep:labs:09

“Raw”. Save

the capture

(using the

“Save as”

button) as

”my.pdf”.

Use

Notepad++

to open the

my.pdf file

and remove

the headers

as shown in

the

screenshot

below.

Save it, close

Notepad++

and double-

click on the

newly saved

file

(my.pdf).

Task B [20p] - Conclusions

 Discuss the output and call the assistant to show him/her your progress.

https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-extractdata.jpg?id=ep:labs:09
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep5_wireshark-extractdata-result.jpg?id=ep:labs:09

	Lab 09 - Memory, CPU and Network Monitoring (Windows)
	01 - Objectives
	02 - Memory, CPU and Network Monitoring (Windows)
	Introduction

	03 - Tutorials/Exercises
	Exercise 01. [30p] RAM Monitoring
	[15p] Task A - Identify the problem
	[15p] Task B - Conclusions
	Exercise 02. [30p] CPU Monitoring
	Exercise 03. [40p] Network Monitoring
	Task A [20p] - Go through tutorial
	Task B [20p] - Conclusions

